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1. Intr ion

In Baek et al (1994) (subsequently abbreviated BGWMF) techniques are given for
a hypothesis-testing approach to discriminant analysis in which one wishes to control one
of the probabilities of misclassification. Methods are presented for continuous variables
only, as well as for a mixture of continuous and categorical variables. Essentially, the
hypothesis-testing approach based on the ratio of maximized likelihood functions
proposed by Krzanowski (1980, 1982) is employed and the test statistic is bootstrapped in
order to estimate critical values for the allocation rule in such a way that the error rate is
controlled. In Miller et al (1993) (subsequently abbreviated (MGW)), a similar
hypothesis-testing approach is used for discriminant analysis and outlier detection in the
presence of missing data. The EM algorithm (Dempster et al (1977)) is employed to
obtain maximum likelihood estimates of model parameters and compute the maximized
likelihoods based on the available data. That paper, however, only considers the case in
which all variables are continuous and, in fact, normally distributed.

In this report, we wish to consider the remaining case in which we have a mixture
of continuous and categorical variables used as discriminants, and also missing data,
potentially in both the training sets and in the new observation to be classified. Once
again, we use a hypothesis-testing approach to classification and bootstrap the test
statistic in order to control the probability of a particular type of misclassification. We

present three algorithms for handling this situation:

(1) The INDICATOR algorithm - This algorithm begins by converting each categorical
variable with j categories into j - 1 indicator variables. This results in a larger
number of variables (unless all categorical variables are already binary, in which
case the data set is unchanged). These indicator variables can be analyzed using
techniques for quantitative data. In this algorithm we make the (obviously

incorrect) assumption that all variates are continuous and, in fact, normally
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distributed. We then perform discriminant analysis using the transformed data and
the techniques of MGW.

The FULL algorithm - Next, we model the joint distribution of each observation in
the following manner: Suppose each observation consists of p categorical variables
and q continuous variables. The categorical variables define r cells of a contingency
table in which the observation could fall, where r is the product of the number of
categories possible within each categorical variable. ~We assume that the
observation will fall into cell i (i = 1, .., r) with probability p;, and that the
conditional distribution of the continuous part given that the discrete part places the
observation into cell i is multivariate normal with mean p; and Z;. We then employ
the EM algorithm to obtain maximum likelihood estimates of parameters in this
model and compute maximized likelihoods of the available data, and bootstrap the
ratio of maximized likelihoods, as was done in BGWMEF.

The COMMON algorithm - This algorithm is essentially the same as the FULL
algorithm, except that we assume a common covariance matrix across all
multinomial cells. That is, the conditional distribution of the continuous part given
that the discrete part places the observation into cell i is assumed multivariate
normal with mean y; and X, with X no longer depending on i. This reduces
considerably the number of parameters that need to be estimated and makes
possible calculation of the likelihood ratio statistic when some cells may be sparsely

represented, or not represented at all.

Simulation studies are conducted to compare and contrast the performance of each

of these procedures with regard to their ability to accurately control the Type I error rate,

and with regard to their power.



2. ion iew of th ized Likelih i I

Suppose we wish to classify a (p+q)-dimensional random vector V into one of two
populations 7, or 7. Suppose further that V can be partitioned as V = (X, Y), where X =
Xy, X5 s Xp) is a p-dimensional vector of categorical variables and Y = (Y, Y5, ...,
Yq) is a g-dimensional vector of continuous variables. Suppose that for i = 1, ..., p, the
variable X, takes on one of the r; possible values 1, 2, ..., 1. Then the vector X takes on
one of r = H?zlri possible values. We let ¥ denote the set of all possible values of the
vector X. Finally, suppose that training samples {Vgl)}, i=1,..,N; fromn; and {ng)},
i=1, .., N, from r,, each having the same structure as V, are available, and that data
may be missing at random from any part of V or from the training samples.

The generalized likelihood ratio test (GLRT) procedure for classifying V into 7,

or T, is based on a hypothesis testing approach. That is, the classification of V is done by

testing

. (1) (D (1) .v@ v 2)
Hp: V, V1 , V2 y o ’VNI € my; V1 , V2 - ,VNz € 7,
Versus 1)

. v (D (1) . (2) v (2
Hy: V1 ,V2 ) ,VNI en;V, V1 ,V2 y e ’VN2 € T,.

The two misclassification probabilities that we will be interested in are P(2|1) and P(1]2),
where P(i[j) denotes the probability of classifying V into n; when in fact V € . We will
refer to a = P(2[1) as the significance level for the test and P(2|2) as the power.

Let m denote the number of elements in V that are missing and let V(Z) = (X(z),
Y(z))denote the (p - m)-variate vector of available data in V. Similarly, let mi(i) denote the
number of elements missing from Vi(i) and let Vi(g) denote the (p - m?))-variate vector of

available data in Vi(i) G=1,21=1,2, .., Nj). We assume that 7, has joint density

function f(V|6(1)) and that m, has joint density function f(V|0@)), where f is some




parametric density function with parameters 0 and 6@ for populations n; and m,,

respectively. Then, under Hy, the likelihood of V and the training samples is given by

1 1 1 2 2 2
Lo, @D v, vV, v, . ,V&f)Loz(e(Zn VO v, ,V](qz)), @)
where N
1 1
Lor®D V. VP, VD, . Vi) = f5VIe) Iy v o), ©

Ny
2 2 @)\ _ )
L,(6®) Vi vy, ,VNZ)—iI;Ilei(Vi 10(2),

fz(Vle(l)) is the marginal density function for V(2) evaluated at V(2) with parameters (1),
and t}i(ViG) 100)) is the marginal density function for Vi((i;) evaluated at Vi((%) with

parameters 80). Under H,, the likelihood of V and the training samples is given by

M (D M ? v@ @
L 6D v, v,7 . ,VNI)L12(9(2)| V.V Ve VO, )

where

Nj
M o Dy _ (1
L, 0 VLV, ,VNI)—iI;Ilf“(Vi 1o(),
2 2 2 N 2
Lop®@]V, VD, v, . ,vgg) = fz(VIG(z))iI__Il £,(V7)o@),

and fz(V|9(2)) is the marginal density function for V(2) evaluated at V(z) with parameters

0@, we emphasize that these are the likelihood functions for the available data rather
than the likelihood functions for the complete data since f, and fji G=1,21=1,2, ..,

Nj) are marginal densities for the available part of each observation, rather than the

likelihood functions for the complete data.




The GLRT procedure is based on the ratio

(1 1 2) @ 2
(9(1) P Lon @V, VI Vi, W ))L L6V v ,V;;)
Vi), . ('))L 0@ v, v v (2) . ,vg;)

©)

(1 (1)
oD, 621V,

N1 1 1 N2 2 2 2
LOI(G( v, v v v(‘))Loz(ef) WOV, (9))

0) (1) VLDV VO VD, (2))

1
L“(G( s ViDL

where 68) and é\?) are maximum likelihood estimates of 80) (j = 1, 2) under the null and
alternative hypotheses, respectively. That is, 6(1) is the MLE of 6(!) based on the sample
v, viID, v, ("} 62 is the MLE of @ based on the sample {V\, V¥, .,
V(z)} and e( ) is the MLE of 6() based on the sample {V{), Vi), . V“)} and 0(2)
the MLE of 6@ based on the sample {V, V(Z), ng) e V(z)}

Equivalently, the test procedure may be based on the statistic
=1log(LR) = Ag; + Agy - Aqq - Ag0s 6)

where
N
_ 50y, 3 R0
Aoy = logfr (V16 7) + i=llogfli(Vi 165 ) @)
¥ @R
= Llogf(Vi 1057,
=1 !
3 AWM
= ;[.1 logf};(V; '16; ), and
N
_ SON) @3@
Ayp = loghy(V10,) + i=1logfzi(Vi 1077).
A key step in evaluating A for a given sample is the computation of the maximum
likelihood estimates and the corresponding maximized log-likelihood functions A, Aq,,

Ay1» and A}, in equation (7). This is no trouble when the data are complete, as illustrated

by (BGWMF). However, in the presence of missing data, the usual expressions for
5




maximum likelihood estimates are no longer valid. In this case, maximum likelihood
estimates are obtained via the EM algorithm (Dempster et al (1977)). The EM algorithm

is an iterative procedure for obtaining parameter estimates which maximize the likelihood

function of the available data. It involves two key steps:

(E -step) - Using current estimates o® (where k now denotes the current iteration step,
rather than designating m; or m,), estimate the values of the complete data
sufficient statistics by computing their expectations given the available data.

(M-step) - Determine the values of the parameters which maximize the likelihood for the

complete data based on the current estimates of the complete data sufficient

A
statistics, thus yielding glk+D),

The EM algorithm iteratively performs E- and M-steps until the sequence {6(k)}

converges to an adequate approximation to the MLE. To evaluate the test statistic A of
equation (3), we must implement the EM algorithm four times. That is, /6\81) and A, are
based on the sample {V, V(ll) , Vgl), s Vl(\} 1)}, 682) and A, are based on the sample {V(lz),
ng), e s Vl(‘?z)}’ 6(11) and A;; are based on the sample {V(ll), Vgl), e s Vg:}, and 622) and
A, are based on the sample {V, V(lz), ng), s VS;}.

The decision rule is described as follows: small values of A provide evidence in
favor of H,, hence, V is classified into 7, if A < A, otherwise v is classified into 7t;. The
cut-off value A, is chosen so that P(2|1) = a, the desired significance level for the test.
Since the null distribution of A is not known, the critical value is approximated by the
parametric bootstrap (Efron 1979). For some large integer B, B bootstrap samples {(v*,
V:m, V;(l), s V;(]) } are simulated from a distribution with density f(Vlé(l)) and B
bootstrap samples {VI(Z), V;(z), s V;(j)} are simulated from a distribution with density
f(V|6(2 )), where 6(1) and 6(2) are MLEs obtained from the samples {V(I])’ Vg ), s VS:},

and {V(lz), ng), v s Vg;}, respectively. (Notice that in this case, /9\(1) = 6(11) and 6(2) =

6



682).) When there are missing values, the simulated bootstrap samples should also have
missing values in a configuration similar to that in the actual data. For each bootstrap
sample, the test statistic A is computed, thus generating a random sample {KI, l;, s k;;}
of variates that have approximately the same distribution as A under Hy,. For an a-level
test, the cut-off value x; is chosen as the a-th empirical quantile of {k:, l;, s k;}.
Finally, V is classified into 7 if A > A_; V is classified into 7, if A <A,

As was pointed out in (MGW), this test procedure is only an approximation to the
true GLRT procedure since the critical value is obtained via bootstrapping and we may
further relax our approximation to the true GLRT procedure by relaxing the number of
iterations performed by the EM algorithm. That is, we may choose a stopping criterion
for the EM algorithm that does not continue iteration until convergence has been obtained
to a high degree of accuracy. Whatever the stopping criterion, bootstrapping the test
statistic insures an approximate o-level test. As in (MGW), it would appear that very
little power is lost by only performing a very few iterations of the EM algorithm, as
opposed to carrying out iterations until MLEs are obtained with a high degree of
accuracy. In Section 6, we often use only three iterations as standard practice in our
simulation studies.

Our implementation of the GLRT procedure for discriminant analysis is
summarized in Figure 1. Figures 2, 3, and 4 further describe the bootstrapping module,
the computation of the test statistic A, and the EM algorithm for obtaining MLEs. Each
of the various algorithms discussed in this report share this common skeletal structure.
The differences lie in the type of model being assumed for the data, the corresponding
implementation of the EM algorithm for obtaining MLEs, and the precise formulas used

to evaluate the maximized log-likelihood functions.




3. The INDICATOR Algorithm

In our first attempt to implement an algorithm for discriminant analysis for mixed
categorical and continuous variables with missing data, we desired to use the methods
presented in MGW with as little adaptation as possible. One way to do this would be to
treat the categorical variables as if they were continuous and use the procedures of MGW
without any alteration at all. This is perhaps not such a bad idea if categorical variables
have a large number of categories, if these categories have a natural ordering, and if the
distribution of this variable has a somewhat normal shape. In most cases, however, these
conditions are not satisfied and the procedure would be totally inappropriate.

A modification to the above approach is to replace each categorical variable with
indicator variables in the following manner: We replace each categorical variable X;
(i=1, ..., p) from V with the r; - 1 indicator variables

Wij=I(Xi=j)={(l) fﬂ}éir:fse (§=1,2,..,1,-1). (8)
Hence, the vector X of categorical variables gets replaced by a vector W of binary
variables of length Zleri - p, producing the transformed vector V=W, Y) If X; is
missing in X, then each Wij G=1,2,..,r1 - 1) is missing in W. We transform the
training samples Vi(i) G=L2i=12,.., Nj) in a similar manner producing \N’i(j) Gg=1,
2;i=1,2,...,Np).

Now, having transformed each observation, we classify V by classifying v
according to the GLRT procedure as outlined in (MGW) for the continuous-variables-
only case with missing data using the transformed data V and \N’i(i) G§G=121i=12, ..
Nj). That is, we proceed as if V and Viﬁ) G=1,21i1=1,2, .., Nj) were normally
distributed, ignoring the fact that many of the components are binary. In simulation

studies (see Section 6, below), we see that this method actually performs about as well as



methods based on a more plausible model for the categorical variables, and is much
easier to implement.
4, TheF ri

Next, we derive the GLRT procedure using a more plausible model for the
distribution of V. In this case, we assume that the distribution of X follows a multinomial
distribution in the sense that Pr[X = x] = p, for each x € ¥, and the conditional
distribution of Y given X = x is multivariate normal with mean p_ and covariance matrix

and Z,. Hence, 0={py, ny, Z;;X € ¥} and
f(v|0) = pyMVN(y|p,, Z,), 9)

where MVN(y|u,, Z,) denotes the value of the multivariate normal density function with
parameters p, and Z_ evaluated at y.

The first step in deriving the GLRT procedure is to develop the EM algorithm for
obtaining MLEs of 0 given a collection of observations (V{, V,, ..., V) with missing
values from such a population. The vectors V; may be partitioned as (X, Y;), where X,
and Y; are the vectors of categorical variables, and continuous variables respectively, and
further partitioned as (X;;, X,;, Yy, Y5;), where X;; and Y,; correspond to missing
observations, and X,; and Y,; correspond to available observations. (In this final
partitioning, the dimensions of the various pieces may vary with i, and elements may be
permuted differently for each i according to the pattern of missing values in each

observation.) We note that the complete-data sufficient statistics for the parameters in

this model are

N, =Z I(X; =x),
S, =2 IX;=x)Y,and (xe¥) (10)
$S, == IX;=nY;Y,,




and that the MLEs for the parameters in this model based on the complete data are

AN
Py = N,/n,

n,=S/N,and (xe'¥) (11)

T
X

A A A
Zy= SSx/Nx "By H
The M-step in this setting simply amounts to evaluating each of the pieces of (11).

The main computational burden lies in computing the conditional expectations of the

complete data sufficient statistics given the available data under current parameter

estimates in each iteration (the E-step).

),

In the E-step, we wish to compute (under the distribution defined by 6

E[N, | {Xyp Ypp),1=1,n}]= Z?=1E[I(Xi =x) | (X5 Yol (12)
E[S, | {(Xap Yo i=1,n}]= Z1 E[I(X; = )Y; | (Xy;, Y], and x € ¥)
B[SS, | {(X,p, Yo, i = 1,0}] = Z E[IX; = 0)Y,Y] | Xy, Yol.

This computation is facilitated by the following identities:

E[I(X = 0)h(Y) | (X;, Y)] =Pr[X =x | (X,, Y,)] * E[h(Y) | X =X, Y] (13)

I(X, = X,)p,MVN(y, [ 1y, E,)
PriX =x| (X, Yp)] = =~ X S 14
(X=X X Vo)1= 51, = X)pgMVNY, | iy Z) (1
xe¥
1 12 22), - 2
BLY, | X=x, Yol = + 50208 v, - u?) (1)
E[Y,Y;|X=x, Y,]= 17)

1) (12),<(22),-11 T
s 50250041580 L By | X = x, Yo E[Y)| X =x, Y,]
T x= - _ T
ELY, Y1 | X=x Y,]=E[Y, | X=X, Y]+ Y] (18)

10



EIY,Y, | X=x,Y,] = Y,Y, (19)

Here, uil), “5‘2)’ ZS‘”), 25‘12), 25‘21), and 25‘22) are appropriate partitions of py and Xy
corresponding to the missing and available parts of Y. Equations (15) - (19) are used to
estimate the missing parts of E[Y | X =Xx, Y,] and E[YYT | X=x, Y,]. Computation of
the expectations in (12) is then carried out as follows: For each observation in the data
set, compute E[I(X; = x) | (X5;, Y5, E[I(X; = X)Y; | (Xy;, Y], and E[I(X; = x)YiY;r |
(X5, Yo;)] for each x e ¥ via equations (13) - (19). Accumulate these over all
observations to obtain (12).

In the case of continuous variables only, (MGW) used estimates of parameters
based on substituting means for missing observations as initial estimates in the iterative
process. This becomes more complicated in the presence of categorical variables. To
simplify initialization, we use “blind initialization”: we initialize each p, with 1/r, each
p, with 0, and each X, with I. Experience so far indicates that the first iteration of the
EM algorithm substantially alters the parameter estimates to something comparable to
“mean substitution,” if that means anything in this context. In any case, this initialization
procedure has worked adequately so far in simulation studies.

Having evaluated the MLEs using the EM algorithm, we need a method for
evaluating the maximized log-likelihood functions in equation (7). The likelihood
function for the available data is the product of the likelihoods of the available parts of
each observation. The likelihood of the available part of a single observation is the
marginal density for (X,, Y,). This may be obtained from the density for (X, Y) by
integrating out X, and Y,. This gives

fxz,yz(xza)’z) = NZ I(x2 = i2) Px MVN(Yz | 353 zi)' (20)

xe¥V

11




The maximized log-likelihood of the available data in a sample is obtained by
accumulating the values of the log of (20) over all observations in the sample. Thus, we
may evaluate each of the pieces Ag;, Agy, Aj, and A, in equation (7), from which we
may evaluate the test statistic A = log(LR) given in (6).

As will be seen in the simulation results of Section 6, the FULL Algorithm has
one major flaw that must be addressed. That is, it can only be used in cases in which
there is adequate representation in each cell to obtain a full-rank estimate of Z_ for each x
e ¥ in both populations. If r is large, i.e., if there are a large number of categorical
variables, or a large number of categories within some categorical variables, or both, then
the training samples may need to be extremely large so that all parameters can be
estimated accurately. In practice, such large samples may not be available, and it
becomes necessary to impose further constraints on the parameters of the model so that |

the number of parameters required is reduced. This leads us into our discussion of the

next algorithm.

. The COMMON Algorithm
This last algorithm is very similar to the FULL Algorithm except that in our

model for the data, we assume that the conditional covariance matrix for the continuous
part given the discrete part is common for all x € W. That is, the conditional distribution
of Y given X = x is multivariate normal with mean p, and covariance matrix and X not
depending on x. Hence, 6 = {p,, p,, Z; x € ¥}. This reduces the number of parameters
that need to be estimated considerably, and makes parameter estimation possible when
some cells are sparse, or not represented at all. We allow the possibility of different
parameters for each of the two populations, but within each population, £ is common
across all multinomial cells. This model gives precisely the general location model of
Olkin and Tate (1961). The EM algorithm for this model is developed by Little and

Schluchter (1985), and they point out that this can be used to implement the GLRT

12




procedure proposed by Krzanowski (1982). What follows is precisely this procedure,
with the added feature that we bootstrap the distribution of the test statistic in order to
choose critical values to control the P(2|1) error rate. Although Little and Schluchter
(1985) describe the EM algorithm for this model in considerable detail, we present a
description of the algorithm here that is consistent with the notation of Section 4.

First, we observe that the complete-data sufficient statistics for the parameters in

this model are

n
N, == I(X; =),
S, =% IX;=x)Y;,and (xe¥) 21)
sS=x Y/,
1

and that the MLEs for the parameters in this model based on the complete data are

A

Py = N,/n,

A

B, =S,/Ny,and (xe ), (22)

A A A

2= 2y epPxZy
where gx is given by equations (10) and (11). In other words, the MLE of Z in this case
is precisely a weighted average of MLEs of X, for each x based on the FULL model with
weights Sx. Hence, we may perform the M-step in this algorithm with exactly the same
formulas as the M-step in the FULL Algorithm, except that after each flx is computed, we
average these according to (22) to obtain the updated estimate of the common X. The
E-step for this algorithm is also identical to the E-step in the FULL Algorithm, except
that throughout formulas (13) - (19), each ﬁ\lx is replaced by the common ﬁ The
evaluation of the maximized log-likelihood functions in (7) is also performed using (20),

A
as in the FULL algorithm, with again, the only difference being that each X, is replaced

A
by the common ZX.
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imulation Resul

We have performed simulations of each of the three algorithms (INDICATOR,
FULL, and COMMON) based on several different parameter configurations in order to
determine how well the algorithm controls the Type I misclassification probability as
desired, and to assess the power P(2]2) of each algorithm. We also keep track of how
many times the algorithm fails to classify the observation at all. These failures occur
when for some reason the simulated data fails to yield full-rank estimates of all required
covariance matrix parameters. This results in an undefined test statistic A. This happens
most frequently in the FULL algorithm, and is caused by a very few number of
observations falling into one or more of the multinomial cells. It happens occasionally in
the INDICATOR algorithm when at least one possible value of a categorical variable is
not represented. Failures may occur when the test statistic is undefined for the sample
which we are trying to classify, and also when the statistic is undefined for attempted
bootstrap samples. We see in our simulations that the COMMON algorithm is least
susceptible to these types of failures.

Our first simulation involved the same parameter configurations used in BGWMF
(Case 3: Mixture of Categorical and Continuous Variables). That is, we consider the case
in which the categorical part is a single Bernoulli variable and the continuous part is a
single normal random variable independent of the categorical variable. For population
7, the Bernoulli parameter is p; = 0.1. The mean and variance of the continuous
variable are p; = 0 and G? = 0.5, respectively. For population m,, we use p, = 0.9, 0.7,
and 0.5, cg = 1.0, and p, = 0.5 + Acg where A takes on values 0, 1, 2, and 3. The
observed significance level ﬁ(2| 1) is the proportion of times out of 500 simulated trials in
which the variable V is classified into 7, when, in fact, it was simulated from n;. The
estimated power I/;(2]2) is the proportion of times out of 500 simulated trials in which the
variable V is classified into m, when, in fact, it was simulated from =n,. In order to

achieve an approximate significance level of a = 0.05, the variable V was classified into
14




7, if the test statistic A is less than or equal to ?»; , the 0.05-th empirical quantile of {XI,
Mgy s M)

For N; =N, = 50 and B = 99, the power estimates are plotted in Figure 5, based
on simulations with no missing data. We see that the FULL and COMMON algorithms
agree very well with the power curves plotted in BGWMF (Figure 2). In fact, with no
missing data, the COMMON algorithm is essentially equivalent to the method of
BGWMF, so these simulation results should agree very well, as they do. The
INDICATOR algorithm does not agree well with the FULL and COMMON algorithms.
For this reason, the points corresponding to the INDICATOR algorithm are not connected
with lines, since this would clutter the plot. It would seem that the INDICATOR
algorithm has higher power in general than the other two. This is surprising since this
algorithm does not model well the true distribution of the binary variable. A closer
examination of the simulation results shows that this is, in fact, misleading, since the
INDICATOR tends to yield a significance level nearly twice the desired 0.05 level. This
can be seen in Figure 6, which shows the power estimate plotted versus the observed
significance level. Each plot in Figure 6 corresponds to a specific va{lue of A. We can
also see that the COMMON algorithm most accurately achieves the desired o = 0.05
significance level.

In Figures 7 and 8, we show corresponding plots based on data with missing
values. In these simulations, each variable in each observation was deleted independently
with probability 0.1, so that roughly 10% of the data is missing. We see an overall
decrease in the power of all three algorithms compared to the full-data case, but this is to
be expected since the test is based on less available data. Otherwise, the results of the
missing-data case are comparable to the results of the full-data case.

We have tabulated the results of this simulation in Table 1. The ERROR column
shows the percentage of times out of the 500 simulations that the algorithm failed to

classify V due to singular parameter estimates. We see that the FULL algorithm is most
15
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susceptible to failures of this sort, failing as much as 6 to 7% of the time when p, = 0.9
and no data is missing. The INDICATOR algorithm failed somewhat less frequently, and
the COMMON algorithm never failed in this study.

In our next simulation study, we consider the case in which we have two
categorical variables, each with two categories, and two continuous variables. For
population 7, each possible combination of the categorical part (X = (1,1), (1,2), (2,1)

and (2,2)) occurs with probability 1/4. The conditional distribution of the continuous part

[1 0.5]
2i=los 1] (23)

within each multinomial cell (i.e., conditional on each possible value of the discrete part).

is MVN(O0, Z,), where

For population ,, the conditional covariance matrix for the continuous part is X,, where
%, is given by
S 1 -05 s
2|05 1 [ 24)

We use three different probability distributions for the discrete part, and four different
configurations of mean vectors for the conditional distributions of the continuous part
given each possible discrete part. In the plots and tables which follow, the three
probability distributions are coded with the variable PCODE, which takes on values 1, 2,
and 3. The four mean vector configurations are coded with the variable MCODE, which

takes on values 1, 2, 3, and 4. The parameter configurations defined by these codes are

shown in Table 2.
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PCODE PiX=(1,1)] PruX=(1,2)] PrX=@ )] PrX=(,2)]
1 0.25 0.25 0.25 0.25
2 0.50 0.20 0.20 0.10
3 0.80 0.10 0.10 0.00
MCODE __ E[YX=(, )] E[YX=(1,2)] E[YX=@ 1)] EYX=(@,2)]
1 (0,0) (0,0) (0,0) (0,0)
2 2,2) (1,1) (1,1) (0,0)
3 (0,0) (1,1) (1,1) 2,2)
4 2,2) 2,2) 2,2) 2,2)

Table 2. Definitions for parameter codes used in out second simulation study.

PCODE = 1 corresponds to a uniform distribution across all multinomial cells. PCODE
= 2 and PCODE = 3 correspond to distributions increasingly favoring cell (1,1).
MCODE = 1 corresponds to a mean configuration identical to that for population ;.
MCODE = 2 and MCODE = 3 correspond to changes in mean for certain cells, and
MCODE = 4 corresponds to the sum of these two changes. For PCODE = 1 and

MCODE = 1, population 7, is identical to population m; except for the correlation

between the two continuous variables.

As in our first study, we take N; = N, = 50, B = 99, o = 0.05, and base our
observed significance level and power estimates on 500 replications of the procedure in
each case. Figure 9 shows the power estimates plotted versus the mean configuration
when no data is missing. Figure 10 shows plots of the power estimate versus the
observed significance level for each mean configuration. Figures 11 and 12 are
corresponding plots for approximately 10% missing data, with data deleted at random in
the same manner as our previous study. Table 3 shows a listing of these results,
including the percentages of failures due to singular parameter estimates.

In Figure 9, we see the power increases in general as the separation between in

means increases (i.e., as MCODE changes from 1 to 4). MCODE =2 and MCODE = 3

18
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actually correspond to the same degree of difference in means, so the power for these are
not expected to be too different. In fact, the power estimates for MCODE = 2 and
MCODE = 3 are very similar when PCODE = 1. However, they are not very similar
when PCODE =2 or 3. In this case, power is lower for MCODE = 3 than for MCODE =
2. This results since for MCODE = 3, the means differ in sparse cells, whereas for
MCODE = 2, the means differ most in the most common cell (corresponding to X =
(1,1)), making it more easy to differentiate between the two populations. We see similar
patterns in Figure 11, and can also see a general decrease in power due to missing values.

These plots seem to indicate that the INDICATOR and COMMON algorithms
have very similar power, these being generally better than the FULL algorithm. As in our
first study, we notice in Figures 10 and 12 that the INDICATOR algorithm has a
tendency to yield a higher significance level than desired, especially when PCODE = 3
(i.e., when some cells are very sparse).

We see from Table 3 that the INDICATOR algorithm fails occasionally due to
singular covariance matrix, especially when PCODE = 3. The FULL algorithm does
much worse when cells are sparse. The FULL algorithm fails about two-thirds of the
time when PCODE = 3 and data is missing! When some cells occur with very low
probability, it is necessary to have very large samples so that each cell is represented
enough to obtain a full-rank estimate of the covariance matrix within that cell. Samples
of size 50, cells are not adequately represented about two-thirds of the time. Once again,
we see that the COMMON algorithm is least susceptible to failures due to singular
parameter estimates.

Readers may wonder why the algorithm doesn't fail every time for PCODE = 3
since cell (1,1) is never represented. If a cell probability is estimated to be zero, the
covariance matrix estimate for that cell is never used in the computation of A, and can,
therefore, be disregarded. It is not cell (1,1) that is the problem here, rather it is cells

(0,1) and (1,0). Readers may also find it strange that for PCODE = 2, there are fewer
20



failures in the FULL.algorithm when data is missing than when all data is available. This
may be explained intuitively as follows: When data is missing in the discrete part, there
is some possibility that the observation falls into any of a number of cells. This
observation contributes to the parameter estimates for all cells to which the observation

might truly belong, resulting in fewer rank problems in sparse cells.

7. Concluding Remarks
In this report, we have extended the results of BGWMF and MGW to perform

discriminant analysis with categorical and continuous variables when data is missing.
We presented three algorithms for doing so. In simulation studies, we have observed that
the INDICATOR algorithm has a tendency to yield a higher Type I error rate than
desired. The FULL algorithm often fails due to singular parameter estimates when some
value of the discrete part is sparsely represented. The COMMON algorithm seems to
avoid these problems, and is, thereforé, the preferred algorithm, especially when samples
are small and the assumption of a common covariance matrix across all multinomial cells
is reasonable. The code has now been transferred to MRC and Dr. Mark Fisk is applying

these techniques to some existing seismic data.
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Figure 5. Power estimates when no data is missing for each of the three algorithms, with
data modeled as a Bernoulli random variable and an independent normal random variable.

Parameters for population x; are p; = 0.1, u; = 0, and cf = 0.5. Power estimates are
based on the following configurations for population n,: p, =0.9, 0.7, and 0.5, og = 1.0,

and pu, =05 + Aog, where A takes on values 0, 1, 2, and 3. For each value of A, the
symbols I, F, and L are plotted at the corresponding power.
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Figure 7. Power estimates when approximately 10% of the data is missing for each of the
three algorithms, with data modeled as a Bernoulli random variable and an independent

normal random variable. Parameters for population n; are p; =0.1, 1y =0, and cs:lZ =0.5.

Power estimates are based on the following configurations for population Ty, pp, =09,
2
0.7,and 0.5, 6, = 1.0, and My =05+ Aoi, where A takes on values 0, 1, 2, and 3.
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Figure 9. Power estimates when no data is missing for each of the three algorithms when
data have two binary and two continuous variates, possibly dependent. For population Ty,
each possible combination of the binary part occurs with probability 1/4. The conditional
distribution of the continuous part is MVN(O, Z,), where Z, is a 2x2 matrix with diagonal
elements of one and off-diagonal elements of 0.5, within each multinomial cell. For
population x,, the conditional covariance matrix for the continuous part is X,, where Z,
has ones on the diagonal and off-diagonal elements of -0.5. Several distributions for the
discrete part, and several choices of mean vectors are used, as defined in Table 2.
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Figure 11. Power estimates when approximately 10% of the data is missing for each of
the three algorithms when data have two binary and two continuous variates, possibly
dependent. For population n;, each possible combination of the binary part occurs with
probability 1/4. The conditional distribution of the continuous part is MVN(O0, Z,), where
Z, is a 2x2 matrix with diagonal elements of one and off-diagonal elements of 0.5, within
each multinomial cell. For population x,, the conditional covariance matrix for the
continuous part is X,, where I, has ones on the diagonal and off-diagonal elements of
-0.5. Several distributions for the discrete part, and several choices of mean vectors are
used, as defined in Table 2.
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